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Software Voting in Asynchronous
NMR Computer Structures

1. Introduction

Modern computer systems are being used in environments that require increased reliability due to the ,

nature or the tasks being performed. lFor example. future avionics computers will replace the mechanical

control of present aircraft. The computers will make thousands of decisions per second concerning the

stability of the aircraft. The svstcm must be designed so that the computer %ill nccr fail in flight, since the

stability decisions can not be made by the pilot. In many cases. the required reliability is being obtained by

replicating hardware components. and comparing the outputs of the components to determine the ct-rrect

result. The replication allows the system to tolerate failures in components without affecting the system

reliability.

One technique used to improve the system reliabilit is to replicate the hardware an odd number of times.

and to compare the outputs of the modules to determine whether a majority of the modules agree. If a

majority do agree. then this output is assumed to be the correct output. The comparison to determine a

majority is called voting. The system that performs the comparison on the module outputs is called a voter. If

the hardware is replicated three times, then the system has Triple Modular Redundancy (TMR). The

generalization of IMR is N-Modular Redundancy (NMR), in which each module is replicated N times, and

all N outputs are voted on to determine the correct output. Figure 1-1 shows a TMR system with four

modules. The total number of modules and voters required for TMR is 3.(numberofinodules+

number ofcommunication paths).

Triple Modular Redundancy is a useful technique to mask failures in a system. One module can fail

completely in a TMR system and the output of the system should not be affected. The number of redundant

modules can be increased if the system reliability must be increased. The system reliability can therefore be

increased by simply increasing the redundancy. The cost of this replication can be high. The ideal system

performance of N processors is N times the performance of one processor. In a NMR system. though. all the

processors are performing the same task, so the throughput is the same as for one processor. In fact, the

performance will be worse than that of one processor because some overhead will be associated with the

voting, thereby reducing the system throughput. The added reliability is exchanged for increased system cost

and decreased throughput. Some applications require extremely reliable systems, so the only option is NMR.

Many modern computer systems use some type of replication to increase reliability.

In N-modular-redundancy (NMR), the redundant modules are often computer-memory pairs. The
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# Processes =3x( # Nodes + # Arcs)

Figure 1-1: Non-rcdundant Four Module System and Associated TMR System

computers communicate information to bc votcd on cithcr by hardwarc voters [l11], or by softwarc voters

running on thc processors 141 [9]. Softwarc voting has a numbcr of distinct advantagcs over hardware voting.

one of which is thc flcxibility of thc voter. For example. the Softwarc Implemented Fault Toicrant computer

(IIl-T[) 131. has a voter that can handle a 5-way vote, or a 3-way vote. Trhe system can determine which voter

to use depending on the number of processors available. The software voter routine can be modified as the

system changes in order to improve the system reliaL,;ity. Other reliability improvement features such as

dynamic reconfiguration can be easily implemented in software. and have been shown to improve system

reliability [61 [141. Most of the research on NMR redundancy has made the assumption that the modules are

synchronized [11. Since it is very difficult to force processors to he tightly synchronized, this assumption does

not hold for a large class of systems. Some researchers are beginning to realize that asynchronous systems

offer distinct advantages in reliability 191 and simplicity. The problem remains though of how to design an

asynchronous system that meets the reliability objectives.

A general purpose multiprocessor called Cm' was used to experiment with NMR computer systems [5J.

Cm" has an operating system named Medusa that provides primitives for experimentation, and an

. ... . . ... . ... . ...... .... . .,. .... ,,...,, ... ... . . ... ... .. .... .... .... .V. .
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experimental interactive synthetic workload generator that provides an environnient ct)iiduciC to monitoring

Cm* performance. Cm* is a 50 processor (DEC I.SI-lls) multiprocessor connected by a hierarchical,

distributed switching structure. Each processor is coiincted to a local memory to form a Computer module

called a Cm. The processor is connected to the local memory by a switch called an Slocal. The Cal's are

connected together into clusters by a high speed bus. A high speed microprogrammable bus controller, a

Kmnap, controls access to this packet switched bus, as well as providing access to other Kmaps, and their

associated clusters. The Kmaps are each connected to other Kmaps by t' o interciuster busses. All Cns can

access all the memory in Cin* through the Slocals and the Kmaps. The memory reference hierarchy consists

of local references, intracluster references, and intercluster references.

The Medusa Operating S.stem is a. nessage based. object oriented operating SLystem designed to exploit tie

architecture of Cm* [10]. It was designed with modularity, robustness, and perfonnance in mind. The

functions of the operating system are partitioned into Task Forces %%hich are sets of closely cooperating

parallel processes. The processes can communicate via messages passed through a conimunication mcdium

called a pipe. Medusa provides for Conditional a U;d Um-conditional Snds and Receivos. All data in ledusa is

stored in system defined objects. Objects can be accessed through private or shared descriptors. The Kmap

and the Slocal cooperate to convert a descriptor into a physical address. Operating system functions such as

message communication, address mapping, interrupt handling, activity multiplexing, and mutual exclusion

are performed by the Kniap microcode.

The synthetic workload generator (SWG) [13] is a tool running tinder Medusa that provides a controllable,

interactive experimentation environment for Cm*. ThQ SWG provides a usel interface that allows interactive

experimentation. The SWG allows the user to vary experimental parameters at runtime, so that experimental

data can be collected easily. All experiments for the SWG are represented as a data flow graph. Processes are

represented as nodes of the graph. The communication of information is over arcs on the graph. Buffers are

used to store messages being passed between nodes. Tie synthetic v4orkload is made tip of repetitions of

operations from a library of actions. The actions are designed to simulate real operations. Various control

structures supported by the SWG facilitate the starting and stopping of experiments. The SWG and the data

flow model were used in the experiments described in Sections 4 and 5.

This paper is divided into six sections. Section I provided an overview of the field of highly reliable

systems, a justification for the work presented, and an overview of the research vehicle and tools used during

the research. Section 2 introduces the concepts involved in voting, including synchronization issues, voting

frequency, and voted data. Section 3 presents the experimental paradigm. The types of voters used in the

experiments are also described. A series of experiments that describe the voting overhead in a TMR software

voting system are presented in Section 4. A theoretical framework is developed for a voting overhead model.

L .- .
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.and experimental results are compared to results predicted b% the model. Section 5 presenLs experiments

designed to explore ho, closely s. nchroni/ed %oting smstems must rcinain. Variacion in pr cess ewcution

speed is used to determine how much as nchron. is acceptable in NMR s~stems. Ihe results of the

experiments yield some guidelines tor designing as. nchronous NM R systems. An analysis of the

s. nchroniation data is also presented. Equations are deeltoped that can predict the amount of \ariation in

process execution speed that is acceptable for reliable system operation. \ queuing theor.y model is

deeloped to describe the voter-subtask relationship. The results predicted b\ the model ire compared to the

actual experimental -:sults.

2. Voting Concepts

This section is concerned w ith gi ing an overvie" of voting systems and with presenting the issues involved

in %oting. Triple Modular Redundanc (I'MR) was first proposed in 1956 b von Neumann [15]. Since that

time. 1 MR systems have been built and exaluatcd [2] [7] [14] [16][17]. Iechniqucs ha~e been used to improve

the reliabilit. of IAIR s.stems. and some of these techniques are presented belong. In addition, some new

concepts that relate particularly to softw are \oting are presented.

The design of redundant systems is intended to improve their reliability b\ replicating a module N times.

and comparing the outputs of the N modules. The comparison should take the N module outputs. and choose

the most likely output as the actual output. The comparison has taken many forms oter the years. but a

simple majority \ote is the most popular. A majority (LN/2 + 1 J) of the modules must agree on a \alue for a

particular output. Since most computer systems use a binary representation for tie data, the \oter simply

needs to compare the data bitwby-bit.

In an NMR system, if only one voter is used to determine the correct module output. then the failure of the

voter becomes a catastrophic event. The voter is called a single point of failure. If the voter, however, is also

replicated .V times then the single point of failure has been removed. The systems considered in this report

are all NMR with no single points of failure, generally with N= 3 (TMR). Systems that are TMR with no

single points of failure can mask a single permanent, intermittent, or transient error in either the voters or the

modules.

If the modules to be replicated are software modules, then each module can execute on its own processor,

concurrent with the execution of other modules. The replicated modules that are executing the same task are

not necessarily executing at the same time. The replicated modules will have completely separate code and

data, so they can be called space redundant. In addition, the modules can execute at different times, which is

called time skew redundancy. If the system uses time skew redundancy, then the system may be able to

- ~ a----- .--
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tolerate multiple failures it one time, since the failures %ill affect diIfferent co1mp1utaLtional tasks. In a I MR

s. stin. three sintiltlant , flilures c ould be tolerated if the s qstcn was both time skew and space redundant.

and no more errors occur until the %oters, correct the three faults.

In order to \ote on the outputs of' modules, the voters Must ha\e some knowledge of 'Ahen the outputs

become \alid. Since the modules ma.y hase different clocks, the \oters must he able to itaii for modules to

prepare outputs. before \oting on them. 1kCn if the dules hae the same clock (which would be a singlc

point of failure. so should probabl\ be a oided). clock skew and differences in logic dela\ would introduce

the need for the %oters to wait for the outputs to all become alid. The wait time could be implicit, as in SI1 -'.

such that the %ote occurs at a predetermined time if the module cannot produce the output in time. then the

%ote proceeds without that output). Conersely. the wait can be explicit. as in the Cm* \oting experiments

presented in Sections 4 and 5. such that the %oter waits for a signal from the module indicating the output's

\.ilidit\. In the case of explicit waiting. the oter should not wait indefintc.\ for the module to signal. since

the module ma\ fail in such a a., as to neer produce the signal. The \otcr should, in this case. have a

time-out to pre ent indefinite watting. I"wo types of time-outs are possible. A rnodude external to the voter

could interrupt the voter after a period of time. This requires a clock to determine the time, so is called a

clock drien time-out. The second possibility is an eicnt-driien time out. A number of possible events could

trigger a time-out. but in the experiments in Sections 4 and 5 the time-out occurs after the voter receives n

messages from one module without receiving any messages from another module.

When the module outputs become valid a voter can determine the majority, and generate its own output

called the otcd output. The point in time when the module outputs all become %alid is called a point of

s.nchroni/ntion. since the system will be synchronized with respect to the module outputs at this point in

time. The ,oter must wait for at lea.t a majority of the outputs before it can decide on the correct voted

output. so at least a majority of the modules must reach the synchronization point before the vote. If the voter

does not wait for all the modules to generate outputs. but only a majority, then this is called a point of partial

synchronization.

The amount of work done between votes can be small (a few instructions) or large (thousands of

instructions). The trade-off in determining the voting frequency is throughput versus reliability. \s the

frequency of voting is increased, the overhead due to voting becomes greater. This decreases the throughput.

but will increase the reliability. In general, a TMR system can tolerate one error between votes. However,

there is a probability that two errors will occur between votes. The assumption will be made that the system

can not recover from two such errors. Given an error rate, the system should vote frequently enough so that

no two errors arrive between votes. A task to be performed will take longer to execute as the granularity of

voting is decreased, due to the overhead introduced by each vote. The probability of two errors occurring
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hetween votes will decrease as the granularity decreases, until the otCr execution time dominates the total

execution time. An. ir'ither decrease In granularit\ Aill hae little effect on the prohability of two errors

occurring hct ccn xotes. but tie total task execution time will conltinue to increase. I'helrefire. the

probability of a s. stem failurc sometime during thc task execution % ill increase. As the %oter takes a larger

percentage of the total execution time. the voter becorncs the module that is more likel to fail. The system

reliabilit\ decreases if the granularity is decreased past this point.

I'here arc man issues in~olied in choosing the amount and kind ot'data to be toted on b.v the voter. One

of the First decisions made in designine a NMR s stem is to choose the data to be voted on. Sstelns can be

designcd that would vote on the actual data used in a module. [he actual data would include processor state

that is unimportant to the value of the outputs. For example, if a program is relocatable, then the program

counter may be different for each processor. lhe results produced by the program will. howe% er. be identical.

In a s stcm that %otcs on actual data. the progra ms being executed must all be placed in the same memory

,pace. and the programs ha'e no ilcxibility in indcpendentl. choosing an\ parameters. A more flexible

s',ystcm imht allow modules to act ndependentl\, onl. \oting on the parameters that affect the outputs.

Once the data has been passed to tie \oter. the \oter has sonic options on how to determine the majority.

The \oter could choose to compare bits, words, or an entire array. T he type of dara to be compared is called

the data granularity. Thc choice of data granularity makes a difference in system reliability. If the data is

%otcd on hit-bv-bit. it is guaranteed that a majorit \ill be found. There are only two possible %alues and one

will be the majority. If a majority of the bits are in error then the voted value will be incorrect. Ifa larger

data granularity is chosen, for example an n-bit word, then the \otcr can reach three decisions. All three can

agree on the value. two can agree on the value, or all three can disagree. In this case. the detectability of errors

is improved, since the probability of having two incorrect words that agree is less than having two incorrect

bits that agree. Word voting is less likely to produce an incorrect answer which may cause catastrophic errors

in other modules. The voter can detect when all three disagree, and a recovery routine can decide how to

handle the faults. Even though the voter provides no answer, this is preferable to providing the wrong

answer. If the data granularity is increased again, then the probability that two incorrect data values agree is

decreased. If an entire array is compared to two other arrays, the probabilit of having two faulty but equal

arrays is smaller than the probability of having two faulty but equal words. The array could *:ontain two

correctable errors, yet the voter would not correct either because the data granularity is large. The ideal value

of the data granularity should be when the probability of having two correctable errors in the data equals the

probability of having two incorrect data values agree. A small data granularity allows the voter to correct

many errors, and a large granularity reduces the probability of allowing incorrect data to pass the voter. A

voter could obtain better detectability and correctability by using a small data granularity to correct errors and
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a large data grailairit.\ to detect errors. Ihi,, \oter %\ould, houccr 1, a gre.iter esecuLtion time than a

simple %oter.

General.. so'tware \otcrs do not \ote bit- \-bit. since processors are designed to handle htcs or %Nords

better than bits. If the three %kords pa,,sed to the %oter are X, Y. and /. then the coRbiNiFtorial nmijorit, ote

is defined as:

(*=.XY\ - X. /+ VY

If the alues of V. V. and a ,re kords. then a bit-\ ise %ote vkill proceed in parallel for all n bits in the Aord.

he ceneraton of the oted data ' aluC ,ith this method takes just diree bit-wisc \N I) operations and t,\o

bit-wisc OR operations. 'he comparison \otcr that is popular in man. soft\%.ire \otng ,,.stNs reqtUircs at

least three comparisons, and two branches. I lie comhinatorial niajoritN ioter has straicht in-line code that

could be pipelined on a Special purpose machine to improve pertormance. where the comparison %oter can

not he pipelined. Ihe combinatorial majorit.% \oter therefore reqtires less Qxecutin tim (e than :he claIssical

comparison \oter. and increases the probabilit. of correcting independent errors.

In addition to choosing the data granularity, other parameters of the data must be chosen. It may be

desirable to vote on some abstract data structures. to determine if the data diey contain is equal. Some

interesting problems arise, due to the nature ofsome data structures. For example, a linked list data structure

ma. be passed to a voter by three modules. 'he voter should vote on die data in the linked list. but should

not vote on pointers to data items. The lists should have die same structure. and the same data. but not

necessarii. the same pointers. 'his procedure requires an intelligent voter. w ith knowledge of linked lists, and

with knolecdge of the storage form'At. Other interesting data structures, such as queues or stacks could be

used as inputs to die voters. Abstract data structures are conimonly used in high level programming

languages. so die voters should be able to handle diem. An NMR s.stem should attempt to accommodate the

programmer, not the other way around. Although no systems proidc abstract voting yet. as more

applications are written for NMR systems, the programmers are going to discover the advantages of having

voters that can handle abstract data.

3. Experimental Paradigm

The two types experiments performed use a similar paradigm. The paradigm can be viewed at the highest

level as the execution of a single task. The task to be performed is broken into equal subtasks. Each subtask

is executed in order, with data being passed from one subtask to the next. It is assumed that each subtask has

the exact same execution speed, and that only one word of data is passed from one subtask to the next. Since

the subtasks all have the same execution speed, the task can be simulated by a loop that executes n times with

a synthetic workload that takes subtask, time inside the loop. Figure 3-1 shows the partitioning. Each subtask
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Sutbtask 1

Subtask 2

TASK hn....i Subtask i

F~igure 3-1: Fxpcniment I ask Partitioning

Figure 3-2: TMR Fxpcrimcntal Structure

is triplicated, and a vote occurs on the data passed between subtasks, yielding the structure in Figure 3-2.

Thc triplicated subtasks all perform the same function. They will calculate thc i1h data valuc. scnd a copy of
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the data to eaich oter. and receixe the %oted ttle of the data from die associaited oter. I hie nic% daa \aluc

11 then UNLd InI CAICuIA(InQ thle ( t+ 1 )11 data %aIlo. 1 hei time eaich suhtdisk takes to c.ilculate the !-'I daita a)Luc

i,, an experi inentil \ariaible. AN Of the triplicated Su~htSkS 'A ill haJ% C a \.ari.ihle execution Lim1e. 11111, lttme is Set

b\ the -ranularit-i of the suht.isk. M Ich is defined as the numbe11"r Of' Operations executed hCetxI Mi Oes not

including theC ox erhead due to xoting. An operation is f'our ISo-: :I instruLction1S. the granulairity of cach

-Aubtask can be set herborc an experiment.

The \Ote]' SUhtask is Also triplicated, as shox~ n inl Hieure 3-2. Fach SUhtask send,, each voter twot data words.

I'he first data x% ord is a sequence number to associate data A~ ith an iteration, the second x& ordl is the data to

he Compared h% the oter. When a oter has receix ed data froin a iajority of the subtasks 1 tx.o). it checks to

see if the data %alues agree. If so. then a ma~joritN xote has been achiexed. and the data xaluIC is sent !o die

xUbtaSk asSOCiated x'%ith this xoter. If they do not agree, then the xoter \xaits for the data xalLIe from thle third

subtask to determine the correct xalue. \%hich is sent to the associated suhtask. Each \oter and sUbtask is

assimned its mx~n processor. so each x oter proceeds %.ith the xotinc in parallel x ith the subtask execution.

Three ty pes of voters are used in the experiments. [he first Noter. called the simple Note. is a

synchroni/ing xotEr. It requires the subtasks to reach a full point of synchroni/ation after each subtask

iteration. It has noc internal storage of data from one iteration to the next. The second \oter. called the

internal queue voter, has an internal queue that allows it to handle data from differenit iterations. The

subtasks are not required to fully s~nchroni/e after each iteration. This xoter has been optimiled for high

execution speed in the axerage case and therefore has the shortest execution timei. The third %oter. called the

sequence number %oter. uses the sequence numbers that are sent by the Stibtasks. so that the voter can ordcr

data based on the subtask iteration. This xoter has the longest execution time. All three %oters were designed

to allow easy expansion to N-way voting. The algorithms for the voters are presented in Appendix 1.

As long as the subtasks have similar exectution speeds. the %oter should receixe the igh iteration from each

subtask at approximately the same time. The sequence number voter and the internal queue \oter do not

require a full point of synchroni/.ation. so if one subtiisk is slower than the other two then the voter maN

receive the (U+ l)Y' data value from a fast subtask before the slow subrask sends the t"' data value. Since the

voter now has data from two different iterations, it must be able to distinguish which data is associated with

which iteration, and from which subtask. A voter queue is used to maintain this database. Each row in the

queue contains information about:

1One can imagine wanting to pass morc than one data value from onc subtask to the next. This can be done with a more complicated
voter The entire state of a processor (or selected pans) could bc passed as data. allowing a faults processor to rccovcr from a transient by
accepting the voted statc as its new state. Adding this capability to thc experiment% would complicate them without yielding additional
information about the voting.
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1. i hch iteration this row represents.

2. w hcthIer data has irri ed from each source suhtask.

3. Ahat the data value is from a source subtask (if it has arrived).

I hC column the data is stored in inplicitl identifies the associated destination subtask.

'he sequence number %oter then searchs for an iteration numher in the %oter queue to find the row where

the data for this subtask bclongs. If the iteration number is not found in the queue, a row for this iteration is

placed in the queue and the data is placed in the row. WVhen all of the data %alues Cor a particular ross hae c

arrived. the 'oter reports an errors found %hile %oting and then remoxes the row from the queue.

The %ocer queue has a finite maximum length. If one subtask has not sent any data to the %oter in the same

period in which the other two subtasks have sent nan data messages. the xoter queue could concei% ably

become full. The %oter handles a full queue b remo ing the oldest row (associ:ited %kith an iteration fbr

which all the data has not arrived) from the queue and adding a row associated Aith tile new iteration

number. Errors are reported on the row rcmoved from the queue. The maximum length of the queue can be

large. so that the queue will never become full in experiments.

4. Voter Overhead Experiments
In any N-modular redundancy (NMR) system. the amount of useful work done will be less than the

corresponding non-replicated system. The voting that is done in a NMR system will introduce some

overhead that will reduce the system throughput. The overhead will be made up of many different

components, including the communication time between modules and the time required by the \oters to

receive messages and find the majority. In this section. voting overhead is discussed and a model is developed

to describe voting overhead.

In order to develop a model for voting overhead one must determine a method for representing overhead,

and must determine what parameters affect the overhead. One possible representation for overhead is in

additional operations executed per unit time (operations/second) due to redundancy. I he actual throughput

is the number of subtask operations performed per unit time. As the actual throughput goes down, the

overhead goes up. Mathematically:

Overhead= Non redundant Throughput- Actual Throughput (1)

In this section, the actual throughput is determined, and the overhead can be calculated from the above

equation. The non-redundant throughput is a constant for a given system.
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Fach subtask is executing an instruction sequence itcrati¢l,. Since each iteration is identical, tie total

o erhead is the n hllllber of iterations tines the o\. erhcad for one iteration. \ suhbLisk periforms \, ork for each

iteration Mid the 1.oulnt of , ork is called the granularit, 6. Since the total amount of work to he performed

is a constant. It", then the number of'subtask iterations, 1, is:

1= I'/G or W= IG (2)

In other words, if the total work is 100 units, and 5 units are performed per iteration. then 20 iterations must

he performed.

\s an experiment is performed. tile total execution time is measured. The execution time. i., is the time
trom Ahen a subtask begins the first iteration until the subtask finishes de last iteration. I'he ihroughput. T.

therefore is:

T= W/t. (3)

[he total time. t, can be expressed as:

!T1:",,- Tol t number of insiructions (4)

where _ is the average instruction execution time. and

Total number of instructions= I.(a.G+ k) (5)

where a is the number of instructions executed by a subtask A, hen G= 1 and k is the total overhead per

iteration, including voting. Therefore from Equations 4 and 5

IT= I,_ave1.(aG+ k) (6)

From Equations 2 and 3.

WI,-ave I.(a. G+ k)

1 (7)
li.ave'(a+ k/UG)

The throughput, then. is inversely proportional to the average instruction execution time, the number of

instructions per subtask iteration, and the number of overhead instructions over the Granularity (k/). The

values of k. it-ave, and a are experimental constants, so we can plot the throughput versus the granularity. For

typical values of k, t ,-ave- and a (k = 800, t -ave= 6.5jzs. a= 4), the curve is shown in Figure 4-1.

The previous overhead model is both general and accurate. Although selection of the value of k (the

subtask overhead per iteration) is difficult, a careful approximation to k can be found.

Cm* was used as the experimental vehicle. The Voter and Subtask software routines were triplicated and

each placed on their own processor. The number of iterations. 1, and the granularity, G, were varied during

A,
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Figure 4-1: Predicted Voting O~crhcad

the experiments. The execution time, IT, was recorded for each set of %alues of I and G. Thc total work done.

W was kept constant by chosing a value of / and calculating the value of G. The value of W was chosen to be

16.384 operations. lhe throughput was calculated for each execution time. All three types of voters described

previously were used in this experiment. From the overhead model is can be seen that changing the type of

voter should only affect the value of k in Equation 7. hli throughput versus the granularity is plotted for

various voter changes in Figure 4-2. Even when the voter is changed significantly, the change in throughput

seems to be small.

The model is extremely accurate in predicting the overhead in a system. One problem with the model,

hinted at earlier, is the difficulty in finding values for the constant k. Tlhc value should be predictable by

adding the instruction execution times in the Subtask and the . -zer, but some of the :nstructions used do not

have predictable execution times due to factors like system load. In addition, some of the voting and subtask

execution are performed in parallel, so instruction counts would give an upper bound on k, but not an

accurate value. The amount of parallelism is difficult to quantify without seriously perturbing the

experiment. Therefore, the value of k used in Figure 4-1 was estimated using experimental results. The
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Figure 4-2: Actual Voting Overhead for Various Voters

comparison of the predicted and actual curves, however, loses credibility since the values of k for the

predicted curves must be experimentally determined.

The value of k can be given an upper bound for the non-error case. The upper bound will change as the

Noter changes. but for any given experiment the upper bound can be determined. For the optimized voter

and subtask experiment, this upper bound has been found by adding the instruction execution times for the

subtask overhead and the voter time. The actual value of k will be less than this time because the voter will be

executing simultaneously with the subtask. An upper bound on k is approximated by:

kmaxk + ky-,a

where ks.max is the maximum subtask contribution to k and kv.max is the maximum voter contribution to k.

By analyzing the pi, grams written for the experiments, it is found that:

ksmax 68 in . ctions+ 3 Sends+ 1 Receive

k.ma,= 237 in.), ictions + 3 Conditional Receives+ I Send

The execution times for sends and receives on Cm* Medusa are given in [12]. The average execution time for
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I.SI-I I instructions in the %oter and the suhtask w as determined to be 6.5ps. Lsing this in formation. k ,a is

determined.

k-AMU -- 333 I.SI- II instructions

k,,m-z, 471 ISH-I1 instructions

k s 333 + 471 = 804 ISI-I I instructions (8)

Similarly. the lower bound can be approximated by:

.s-mm 
= 68 instructions + 3 S'ends + I Receive

k-.min = 127 ttsilmt!('l/S + 2 Conditional Receives + I Send

kmin = i lnLx kv mIn,ks- min)

4-2 333 I-SI-I1 instructions (9)

I:quation 9 assumes maximum simuzlta.eous execution of the subtask and the xmter. [he experiments with

the optimized oter .ielded values of k bctween 350 and 712. I'hese experimental results fall between the

minimum and maximum theoretical %alUes calculated above. The bounds should be recalculated if the \oter

or subtask is changed. Figure 4-3 compares the minimum and maximum predicted cur~es, and an

experimental curve (for the optimi/ed \oter). One result that the model does not take into account is that the

%alue of A changes as the Granularity changes. l)uring the optimi/ed 'Oter experiment, the \alue of k \aried

b.N o~er 350 instructions. [his is due to the change in load on the Kmap processors as the Grinularit)

changes. I'he model assumes that the \alue of k stays constant throughout the experiment. In spite of these

deficiencies, the oerhejd model does give accurate predictions of expected voting oerhead.

5. Voter Queue Length Experiments
In an asynchronous NMR computer system, the processors will have their ovwn clocks and will make little

or no effort to synchroniie the clocks with each other. 'he random variation in clock speed and the

difference in process execution patterns will cause differences in the arrival times of the data to be \Oted on

by the voters. The voters should be able to receive data as~nchronously so that the can \ote on the data

when a majority of the processes have sent it. The voters must be able to store message \alues so that one

processor can be calculating the 10" h step in a procedure while another processor can he ,orking on the 121t

step. Eventually both procssors should finish the procedure but as long as no data dependencies exist, one

processor should not be forced to wait for another to finish a calculation. Fen when data dependencies do

exist, when a majority of the processors agree on the value of a step. there is no reason to wait for the rest of

the proccssors to finish before continuing with the next step. In fact, waiting can reduce reliability if a
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Figure 4-3: Comparison of Actual and Predicted Voting Overhead

processor is fiulty since it may never respond to the voter. There should, however. be a limit to the amount a

processor should be allowed to fall behind before it is considered faulty. The random variation may cause

problems if one processor becomes hopelessly behind due to the variation. Experiments have been

performed to discover the nature of how variations in process execution speed affect the amount a process

falls behind the others. Ihc effects of variation in process Cxecution speed. as well as variation of the number

of instructions executed between votes have been examined.

Three experiments have been performed. Fach is designed to explore a different area of the

synchronization problem. Fxperiment one has a single process execute more instructions for ecery step in the

experiment. This process is continuously slower. This experiment shows that the voter oserhead increases as

the slow process falls behind. Experiment two has one process slower for a period, followed by being faster

for a period. Experiment three has one process slower for a period, followed by a period of normal speed.

This experiment is realistic for many systems, since processes are likely to fall behind in a system but are not

likely to speed up.
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5.1. Experiment One

lhe first experiment performed was designed to measure the ahility of the %oter to Sychroniie the

subiasks when one subtask is continuously slower than the other subtasks. Ihe frequenc, of 'oting (or

granularity of the subtasks) was % aried. and the execution speed of one subtask " as % aried. lhe queue lengths

of the voters were recorded as a measure of how far thle slow subtask fell behind the two faster subtasks. The

slower subtask performed 10% to 50% more operations in calculating the next %alue. The slower subtask

represents a process that requires more execution time due to an instruction retr, or due to an interrupt that

it must handle. In these situations, one subtask \ill be temporarilx slower: but as these experiments show. it

would be ill-adsised to design a system where one subtask was continuousl. slower (this experiment shows

design constraints for s.stems that have one continuously slower subtask). Iach %oter recorded the length of

the voter queue ever) time a new iteration was received. Ihe queue length information was sent as a message

to a process that stored the data in a file. The recording of the queue length added some oe~head to the

voter, but each %oter paid the same cost.

The queue length was plotted versus the iteration number for two different granularities and 'arious

subtask degradation as shown in Figures 5-1 and 5-2. For granularit equal to 1024 operations. one subtask

can be up to 10% slower and the queue length stays at one. This implies that the voter overhead is great

enough so that the differences in speed are masked. For larger differences in speed, the queue length grows

to a value and then levels off. The queue length is bounded due to an increase in voter ,xecution time as the

queue length increases. The voter must search for the iteration number in the queue and the search proceeds

linearly. The subtask that is slower will not pay this overhead cost since it has n-I messages waiting for

processing, where n is the queue length.

As the granularity increases, the queue length grows more rapidl,. With granularity equal to 1024 (Figure

5-1). the 10% to 40% additional operations curves apoear to be bounded but the 50% additional operations

curve is not bounded. The curves for granularity equal to 16,384 (Figure 5-2) do not appear to have a

bounded queue length. This is due to the fact that the Noter overhead takes a smaller percentage of the total

execution time for the larger granularity cases. The voter overhead is a fixed value for a specific queue length.

When the slower subtask takes approximateb the same amount of time as the voter, then the voter overhead

is significant in comparison to the subtask execution time. While the normal subtasks are waiting for the

voter to generate a voted data value, the slower subtask can be calculating a data value for one of the old

messages (when the queue length is greater than one. the slower subtask will have data values to calculate for

all the mess..scs in the queue).

. .t. . ....
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5.2. Experiment Two

The second experiment is a ,ariation on the first experient and as designed to e plore the s nchroni/ing

nature of Noters more fully. In this experiment. one subtask is sloAcr than the other tAo subtnks by a

percentage for a period of time. then the same subtask is faster than the other ,tjbtasks for the same period.

Ihe period was chosen to be 20 iterations. For example. subiisk A % ill perforn 10% more operations in

calculating the first 20 data allIues., followed b performing 10% fewer operations for the next 20 iterations.

Subtask A %%ill therefore spend 10% more time executing the first 20 iterations than the second 20 iterations.

While the subtask is operating slover. the queue leMth should behave exact1 the same as in experiment

one. Once the subtask is faster than the others, this subtask should quickl catch LIp resulting in a decline in

the queue length. Ihe rate of decline in queue length should be greater than the rate of increase, since when

the queue has length greater than one the subtask being \aried does not have to wait for die \oter to finish

before beginning the next data \alue calculation.

The first plot ofqueue length %ersus iteration number with granuldrit. equal to 1024 (F-igure 5-3) sho~ks the

expected result. [he queue length increases when subtask A is slo~er and the rate of increase is the same as

that from experiment one. As soon as subtask A begins executing fewer operations per iteration, the queue

length declines rapidly, reaching queue length equal to one. If the granularity is increased to 16,384 (Figure

5-4) then the queue length is not restored to one. and there is a net increase in the queue length over ume.

The queue length increases because subtask A \A ill be spending more time executing the long calculations.

5.3. Experiment Three

Thc third experiment is similar to experiment two. except it represents a more realistic class of

synchronivation problems. A subtask that is performing a calculation may experience a temporary slowdown,

followed by a period of normal behavior such as a subtask which has to perform a recovery routine because of

a bus error or has to perform a one time operating system task. Is the processor running the subtask doomed

to stay behind, or will it exentually catch up even though it always takes as long to calculate a new data value

as the others? As soon as a subtask falls behind, it no longer pays the overhead cost since it has messages

queued up waiting for processing. This fact would imply that a subtask can catch up, and the rate at "hich it

catches up is the incremental voter overhead cost per iteration.

The experiment can be described as follows: one subtask will do additional operations (10% to 50%) for 20

iterations followed by a period of normal behavior (performing the same number of operations as the other

subtasks). The results of the experiment are shown in Figures 5-5 and 5-6. It can be seen that during the

periods of normal operation for all three subtasks, the queue length declines, and given a long enough period
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of normal behavior would reach one. The rate of decline of queue length during normal subtask behavior

indicates the effect of voter overhead on the subtasks.
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5.4. Experimental Conclusions

I he three CXper1nents perilnied gi\e i clear picture of a s, nchroni/ation model for the equal suhtasks

paradigm. I'here !ppear to h two f!ictors in ohed in the model. I he factors are:

1. There is a minimum voter o0erhead that is due to the time required b the voter to receive a
message. handle the data, and xote on the data. 'he subtasks tlat ha'e a qucuc length of one
must pay this o,, erhead cost e' cry iteration of the experiment.

2. [he merhead cost increases as the %oter queue length increases due to an increase in the data
handling cost. ['his factor '.ould indicate that for a long enough queue, tie %oter could mask any
difference in process speed. For practical queue lengths, though, the increase in voter overhead
masks only some of the subtask speed variation.

The s'.nchroni/ation experiments can gi' e some design principles for TNIR as} nchronous 'oting s~stems.

I'hese principles can be applied to optimize die voter queue length. to choose a subtask granularit%. and to
determine the 11 otf process speed ariation alhovkcd in a design. Proper application of the principles ' ill

lead to a design that '.ill hae a bounded queue length for all possible 'ariations in process execution rate.

The principles can be summarized as follows:

1. Smaller granularity subtasks have a higher probability of having a bounded queue length.

2. As subask granularity increases, the random variation in process speed becomes increasingly
important in ensuring a bounded queue length.

3. Greater voter overhead allows a greater variation in process execution rate. This yields an
interesting trade-off in voter design. since a faster voter process will increase system throughput

but will decrease de amount of 'ariation permitted in process execution rate.

These results can be generalized for synchronous voting, as well as asynchronous Noting. If the maximum

voter length is fixed at one, then the system is synchronous like SIF [21 13] [14] and C.vmp [81 [11]. Both of

these NMR systems use a synchronous voter with queue length of one. C.vmp has a hardware ,,oter with a

built in wait feature. The length of the wait corresponds to the voter overhead in these experiments. SIFT

uses fixed scheduling, so a vote proceeds when the next time slot begins. The voter overhead corresponds to

the design margin in the fixed schedule (the time between the end of the process execution. and the end of the

time slot).
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5.5. Synch ronization Modeling

1111 ,is:.LtI0II ill Present .I Model 01 the WIter qu1cue 4:111il1 base,,d 01n gi ilIrit>p0.ct Ji!IiCiICe InI

subtiask e\ccution speed. ind unie. I lie inod! is, :oinipaiced to the LCLLI' XJ)C!i1IIeIt.II hCil fi ltth

elat101ionshp he[\' eenI the Model ind the I \1 R experimHent shouli d hie e plained.

5.5. 1. Queue Length Models

Vie I\MR s%,stem esplained in the pre~ iOIuS section has queues that ~oti1the mesac e epassed

he~cnthe suhltalSkS and tie occrs. Fach \oter has three qUeUCS In %k hich to recci~c 17meSsapCcs And mach

SUhtask has one queuCLe nl s% hich to recei\ e mnessages. IC Sut&Ak rncssxige queue .in !-e .:\ din thc ;icht of

cene ral qIUCIuina theorN. I le queuc 'A ill ia e a birth rate. X. a.nd a deathi rate. ti. Il.tsic: enijm in hcor,.

assumecs that bhoth X and ii are constant.. Also. [lhe hi rth rate mlust he less thall dhe Jeith ate1, ,0 t! dIC h UCUC

ene11th k Ill be hounded. The ;er\ crs of the queue has e a utili/aion of, X/LL. I hie ;Iil /alior fl II eCs LIan

one. Pihere are tAso problems sk ith uIsingl a slImple queuing model! !'or -. (oter Ti ch ron/alio . I >e rc 'til

,i rth raite. X;s not cnstant and that the hirth rate is nit less than the deathl rotc !,r m("!.'h r'et

rr'rmed thle queule length crosss. therefore X\ is areatcr than W± . In ,pite or'~ r ~x i nnn

model canl be des\eloped.

Before a qLieuing model is presented. some background anathsis of the pie'. !ows Section", data Alit be done.

Fxperiment one. in wshich one SUbtask was continual]. slosser. A Ill he Used in dee.loping the mnodel of queue

bhha ior. Fach experimental Curve in the pre\ ionIs Section begins to peak as nime proceeds. I hie queueI length

gros~ s less rapidll:, as the queueC length increases. The queue length appears to approach some hound that is

dependent on the grarnularit% and the difference in execution speed. Some curses h~nae observable bounds.

lhe information from all the experiment one curveS presented could be summarized if this bound

information could he collected. If the queue had a maximum possible value, then each curse either remains

beluss the maximum or rises abose the maximum. If a curvec has a maximum value greater than the

maximum queue length. then die queue will overflow during the experiment, and is unbounded b this queue

lengthl. Otherv ise. the etirve is bounded by the queue length. For three different miaximum \alucs of thc

queue length. the bounded regions and unbounded regions are shown in Figure 5-7. In designing a systemn.

the maximumI queue length can be chosen. and this w&ill determine the acceptable granularities and subtask

execution speed differences to prevent the Queue from oserfiowing. Tlhe curses that determine the regions

appear to be linear on the log versus log scale. That implies that:

log2 Granulariity+ log, PerccniDiffercpice= constant

therefore,

Granulariiy X PerceniDifferenic= constant = VoterOverhead

Thiis result indicates that for a given queue length. the granularity of the subtasks is inversely proportional to
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Figure 5-7: Summar of Experiment One Data

the percent difference in processor speed. The constant is a number of operations A hich is dependent on the

voter overhcad. A first approximation would equate this number of operations to the voter o\crhead for one

iteration. The voter o~crhead is constant along a boundary separating the bounded and unbounded regions.

A subtask can be constantly slower b. a number of operations (the \oter oxerhcad) and still only fall some

constant number of iterations behind the other subtasks. Next. the \alue of the bound can be determined for

any granularity and percent difference.

From the experimental data, the xalue of the voter overhead per iteration (the number of operations slower

one subask may be and not fall further behind) can be plotted against the bound on the queue (the

maximum queue length). Figure 5-8 shows the data. A linear least squares fit was determined for the data.

This equation can predict the maximum queue length for a given granularity and percentage difference in

subask speed. The equation is:

.ifaxonuinQucue/.cng th(.1 f) = 0.0457. fv rterOer/ad- 4.0 (10)

or

VoterO verhe'ad= 21.0-,Al + 92.2 (11)

Equation 10 is fairly accurate in predicting the bound on the queue. but some of the variation in the data

remains unexplained. Equation 11 can predict how much variation in subtask execution speed is allowed

given a maximum queue length. Note that even when the maximum queue length is zern (a totally

synchronous voting system). some variatior in subcask execution speed is allowed. In fact, this model



24 Voter QUCLIC I Clngth Fxperirnents

14

S12.
-1
a
a 10
E

E~ 6

2++

intct~taonsb0 s 50 to0 150 200 250 300 350 400 o h ju

Pr.d.2.o Quein Theorym ModelLngt

indicatesgro taon u ascas le on sth sbtas 92 xoper tion sl ra is reaer talbn hs is hetinrt.imu

mter o~erlicacshown thamethee otcr taeopoexeutoionptme Iis dcpenhdci on e lemng of the uen

A~~~~~gos theas otcr taae loge towe exccutc.n raeta h w thi sb~s ill csul bind cing growthin rath

/ V hc quuc length l rwa oga h uts xcto aei rae intetreeuinrt.I

A1.) = the bi rth rate, a function of the queue length
A= the queuc death rate

X)if 11> I then the queue grows

when -I then the qucuc length is in steady state
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A I - I.)

M1= maximum qLiCuc length Il stCad) SLIte

and
x= percentage decrease in growth rate for each unit increasc in 1.

Ihe maximum queue length equation %as derN ed in the preiOuS subsection. Using this. the Ilue of x

can he determined. .\t the start of each experiment, the length. I. will be /cro. So.

I1)=xl when L=0

Ihis model indicates that the initial growth rate is onl\ dependent on the m.mmuin queue length. and a

constant percentage. [he growth rate is sianpl the slope of the cur'c. Since tile groth rate can be

experimcntaU.l determined, the \alue of" x can be found. Vhe growth rate when /=0 \has determined for a

number of the experimental cur es. From this information, the value of .x w as determined to be:

16S- (,r, nulariti'

Ihis result has no known significance, but is accurate ok er all 'aleCs of granul)arir and percent difference in

execution speed considered in the experiments.

Using th, above resu!ts, the grow&th ratce. hich is simpl the change in queue length omcr time, can be

written is:

&4L) _M -1. 1 ( (- L)
, - di Giran

The value of I. in the aboc equation is a function of time. so:

dl. -16 16M
di - ( 1, ) +C Gr .(O)=0

The solution to this differential equation is:
ex -16. t ,

I()=1-[ exp Gran

Since .11 is experimentjll known, then the queue length can be plotted against time. for various granularities.

and percent differences in subtask execution speed.

5.6. Comparison of Model and Experiment

Five experimentally determined curves are compared to fie predicted cures in Figure 5-9. [he predicted

results are very similar to the experimental results. The model seems to be good at predicting the queue

length. This model does not, however, take communication costs into account. When the granularity is small.

the Cm* interprocess communication costs become significant causing each subtask iteration to have a greater

execution time. Therefore the model is not accurate for small granulanities. Another problem with the model

is that it can sometimes predict a maximum queue length too large. and at other times can predict a maximum
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C 30. - Granularity =1 K +10% slower
-Granularity = 1K +20% slower

-- Granularity = I1K + 30% slower
-J- Granularity =1 K +40% slower

25-Ganularity = I1K + 50% slower
4) 25 Granularity =1 K +10% slower, predictedo- Granularity = 1K 20% slower, predicted

- Granularity 1 IK *30% slower, predicted
- Granularity = 1 K + 40% slower, predicted
- Granularity = 1 K +- 50% slower, predicted0

200

15.

100-E

0 20 40 60 80 100 120 1 40 160 180 200
Time (in & of votes)

Voter Queue Length vs Time

Figure 5-9: Predicted Qucuc Length and Actual Queue Length

qucuc lettgth too small. The predictions arc not consistently too high or too low. The model has several

dcriived parameters. Thc value of x was found experimentally. and the equation found for calculating At is

based on a lcast-squarc-s fit in which some points arc outlying.

T]he queuing model of the voter synchronization experiments can explain a large portion of the variation in

thc experimental results. Somc of the model parameters arc difficult to determine, but they can be

approximated. 'Mhe comparison of the predicted and actual results shows that the model has the proper form

in ordcr to explain the experimental results. By changing the model parameters slightly to account for Cm*

perturbations, the model can ex plain most of the experimental results.
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6. Conclusion

This paper has explored some of the attributcs of NAR computer stICnM,. \lan features of ,oftware

otcers hac been explored both experimentally and theoretically. Section 2 has presented some software

.oting concepts. N-modular redundancy has been described and the software concepts of time skew and

space redundancy have been explained. Various synchronization issues ha~e been presented, including

time-outs, points of synchroni/ation, and asynchronous Wersus s. nchronous s\ stems. 1'c frequency of voting

and the data granularity were shown to be important factors in determining the reliabilit of NM R systems.

I-inall.. a technique was described to allow easy bit-b. -bit \oting on words of data.

In Section 4. some experiments were presented to help measure the overhead in'ol\cd in software voting.

The type of \oter, de voting frequenc., and the average instruction execution time were incorporated into a

model of voting overhead, [he model was shown to accurately describe the experimental data and an analysis

of the programs .icldcd upper and lo\er bounds on the possible overhead. The \oting freqtcncN 'as shown

to be the dominmnt factor in determining the Woting o~erhead.

'Section 5 shows a number of synchroni,.ation experiments. The amount of %ariation in process execution

speed that can be tolerated was determined for three different types of variation The length of one voter's

queue was measured over time to determine how far a process can fall behind\o other processes. The

queue length was shown to have a bound even when one process is continually slower than the other

processes. Guidelines for designing reliable NMR systems were presented, based on the experimental results.

A queuing model was developed to describe the length of a subtask's queue o~er time for any amount of

variation in process execution rate. The model was shown to accurately predict the experiments over a range

of values.

Many of the ideas mentioned in this article could be developed more fully. The reliability of asynchronous

versus synchronous systems could be explored, and the concept of time skew redundancy could be the basis

for reliability studies. The assertion was made that as the voting frequency increases there is a point at which

the rcliability of the system will decrease. 'illis seems intuitive. yet could probably be proven experimentally

or mathematically.
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1. Voter Algorithms

1.1. Simple Synchronizing Voter

Initialize
I .oop forever

F-or i= I to N
Rccive msg i
Classify msg
If majority found then I

send rnsg
cnd For
Report errors

end i.oop

1.2. Optimized Voter with internal queue

Inlitialize
LoAop forever

Conditional Reccive next msg
If voter buffer full then

attempt to rceive missing msgs
If majority received then

vote
report errors
initialize oldest msg slot

Store msg
If majority arrived & not majority found then

vote
If all msgs arrived then

report
initialize msg slot

end Loop

1.3. Sequence Number Voter

Initialize
Loop forever

Conditional Receive
If illegal sequence number then

report(" illegal sequence number")
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Voter \lgorithins

Search for scq nun, inl queuc
if .eq num found then

if' suhtask already sent this seq numn then

report(" seq nUm duplicated")

Elsc
storc msg
If majority received then

VOWC

If all mssarriv ed thcen
If set tit) oldest ithen

report(" complete set not oldest")

Else
report
initialize

FIlse if seq nwin not found then

If queue full then

handle oldest msg

store msg in new queue slot

end L oop
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